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ROBUST, OPTIMAL SUBSONIC AIRFOIL 
SHAPES 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

This application is a Continuation In Part of prior applica
tion Ser. No. 10/043,044, filed Jan. 7, 2002 now U.S. Pat. No. 
6,961,719. 

ORIGIN OF THE INVENTION 

This invention was made, in part, by an employee of the 
U.S. govermnent. The U.S. govermnent has the right to make, 
use and/or sell the invention described herein without pay
ment of compensation therefor, including but not limited to 
payment of royalties. 

FIELD OF THE INVENTION 

This invention relates to design of optimal shapes of air
foils, such as turbine blades, operating in subsonic flow 
regimes. 

BACKGROUND OF THE INVENTION 

2 
essary constraints on the design. In one embodiment, the 
method implements the following steps or processes: (1) 
provide a specification of a desired pressure value at each of 
a sequence of selected locations on a perimeter of a turbine 
airfoil; (2) provide an initial airfoil shape; (3) provide a state
ment of at least one constraint that a final airfoil shape must 
conform to; ( 4) use computational fluid dynamics ("CFD") to 
estimate a pressure value at each of the selected perimeter 
locations for the initial airfoil shape; (5) use computational 

10 fluid dynamics (CFD) to determine the pressure distribution 
for airfoil shapes that are small perturbations to the initial 
airfoil shape; (6) use an estimation method, such as a neural 
network, a support vector machine, or a combination thereof, 
to construct a response surface that models the pressure dis-

15 tribution as a functionofthe airfoil shape, using the CFD data; 
(7) use an optimization algorithm to search the response 
surface for the airfoil shape having a corresponding pressure 
distribution that is closer to the specified target pressure dis
tribution; and (8) provide at least one of an alphanumeric 

20 description and a graphical description of the modified airfoil 
shape. 

The constraint( s) may be drawn from the following group 
or may be one or more other suitable constraints: vortex 
shedding from the trailing edge of the airfoil is no greater than 

25 a selected threshold value; a difference between any resonant 
frequency of the airfoil and the vortex shedding frequency is 
at least equal to a threshold frequency difference; mass of the 
airfoil is no larger than a threshold mass value; and pressure 
value at each of a sequence of selected locations along a 

An airfoil, such as a propeller blade or a turbine vane or 
blade (collectively referred to herein as an "airfoil"), may be 
used in a variety of environments, including different ambient 
temperatures, gas densities, gas compositions, gas flow rates, 
pressures and motor rpm. An airfoil shape that is optimized 
for one environment may have sharply limited application in 
another environment. For example, vortex shedding at a trail
ing edge of a rotating airfoil may be tolerable for the nominal 
design but may become unacceptably high, resulting in airfoil 35 

cracking when the manufactured airfoil differs slightly from 
the specifications. The airfoil design may be constrained by 
certain physical and/or geometrical considerations that limit 
the range of airfoil parameters that can be incorporated in the 
design. 

30 perimeter of the airfoil differs from a corresponding reference 
pressure value by no more than a threshold pressure differ
ence value. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 graphically illustrates an improvement in match of 
a polynomial, where an increased number of training pairs is 
included in a simple NN analysis. 

40 
FIG. 2 is a schematic view of a three-layer feed-forward 

neural net in the prior art. Present designs sometimes lead to extensive airfoil crack
ing or other failure modes after operation over modest time 
intervals of the order of a few hours. For example, the vane 
trailing edge fillet radii for the Space Shuttle Main Engine 
L.P.O.T.P. (low pressure oxidizerturbopump) have occasion- 45 

ally been observed to develop cracks having a mean crack 
length ofabout 0.15 inches. This cracking behavior may arise 
from strong vortex shedding at the vane trailing edges, com
pounded by the relatively thin vane trailing edges and/or from 
the presence of small imperfections in the airfoil trailing edge 50 

shape formed in the airfoil manufacturing process. 

FIG. 3 is a schematic view of a two-layer feed-forward 
NN/SVM (neural network/support vector machine) system 
according to the invention. 

FIG. 4 is a flow chart of an overall procedure for practicing 
the invention using an NN/SVM system. 

FIGS. 5, 6 and 7 graphically illustrate generalization 
curves obtained for a fifth degree polynomial, a logarithm 
function and an exponential function, respectively, using a 
hybrid NN/SVM analysis and 11 training values. 

FIGS. 8A/8B/8C are a flow chart for a response surface 
method used in practicing the invention. What is needed is a method for determination of an optimal 

airfoil shape that provides an approximately optimal shape 
for a class of environments. This airfoil must be robust 
enough to operate satisfactorily in these environments and 
with any reasonable differences from manufacturing specs, 
and satisfies the constraints imposed on the design. Prefer
ably, the method should be flexible and should be extendible 

FIG. 9 illustrates an initial airfoil shape (dotted curve) and 
an optimized airfoil shape (solid curve) for a turbine blade 

55 produced by the invention, for a specified class of environ-

to a larger class of requirements and to changes in the con
straints imposed. 

SUMMARY OF THE INVENTION 

These needs are met by the invention, which provides a 
method, and a product produced by the method, for determi
nation of a robust, optimal subsonic airfoil shape, beginning 
with an arbitrary initial airfoil shape and imposing the nee-

ments. 

FIG. 10 compares the initial and optimized airfoil shape in 
more detail near the trailing edge of the blade illustrated in 

60 
FIG. 9. 

FIGS. llA and llB graphically illustrate surface pressure 
distribution for the initial and optimized airfoil shapes shown 
in FIG. 9. 

FIG. 12 graphically illustrates unsteady surface pressure 
65 loading (maximum pressure minus minimum pressure as the 

pressures fluctuate in time) for the initial and optimized air
foil shapes. 
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FIGS. 13 and 14 each graphically illustrate resulting 
unsteady pressure loading on an airfoil perimeter for the 
optimized airfoil shape for ten perturbations of the optimal 
shape. 

FIGS. 15and16 illustrate airfoil shape for each of the ten 
perturbations introduced in FIGS. 13 and 14. 

FIG. 17 illustrates a perturbation procedure that may be 
applied to vary the shape of an airfoil. 

DESCRIPTION OF BEST MODES OF THE 
INVENTION 

Consider a feed-forward neural network ("NN") 21 having 
an input layer with nodes 23-m (m=l, ... , 5), a hidden layer 
with nodes 25-n (n=l, 2, 3), and an output node 26, as illus
trated schematically in FIG. 2. The first input layer node 23-1 
has a bias input value 1, in appropriate units. The remaining 
nodes of the input layer are used to enter selected parameter 
values as input variables, expressed as a vector p=(p 1 , ... , 

4 
for different objective functions. A rapid training algorithm 
that determines the connection weights cnm and coefficients 
D is also needed here. 

The approach set forth in the preceding does reasonably 
well in an interpolative mode, that is, in regions where data 
points (parameter value vectors) are reasonably plentiful. 
However, this approach rarely does well in an extrapolative 
mode. In this latter situation, a precipitous drop in estimation 
accuracy may occur as one moves beyond the convex hull 

10 defined by the data point locations. In part, this is because the 
sigmoidal functions are not the most appropriate basis func
tions for most data modeling situations. Where the underlying 
function(s) is a polynomial in the parameter values, a more 
appropriate set of basis functions is a set of Legendre func-

15 tions (if the parameter value domain is finite), or a set of 
Laguerre or Hermite functions (if the parameter value domain 
is infinite). Where the underlying function( s) is periodic in a 
parameter value, a Fourier series may be more appropriate to 
represent the variation of the function with that parameter. 

p M), with M~ 1. Each node 25-n of the hidden layer is as so- 20 

ciated with a nonlinear activation function 
Two well known approaches are available for reducing the 

disparity between an underlying function and an activation 
function. A first approach, relies on neural nets and uses 
appropriate functions of the primary variables as additional 
input signals for the input nodes. These functions simplify (1) 

25 relationships between neural net input and output variables 
but require a priori knowledge of these relationships, includ
ing specification of all the important nonlinear terms in the 
variables. For example, a function of the (independent) 

of a weighted sum of the parameter values Pm, where Cnm is a 
connection weight, which can be positive, negative or zero, 30 

linking an input node 23-m with a hidden layernode 25-n. The 
output of the network 21 is assumed for simplicity, initially, to 

parameter values x and y, such as 

h(x,y)~a·X'+b·xy+cy2+d·x+ey+f (5) 

where a, b, c, d, e and fare constant coefficients, would be 
better approximated if the terms x, y, x2

, x·y and y2 are all 
be a single-valued scalar, 

(2) 

FIG. 2 illustrates a conventional three-layer NN, with an 
input layer, a hidden layer and an output layer that receives 
and combines the resulting signals produced by the hidden 
layer. 

It is known that NN approximations of the format set forth 
in Eqs. (1) and (2) are dense in the space of continuous 
functions when the activation functions <I>n are continuous 
sigmoidal functions (monotonically increasing functions, 
with a selected lower limit, such as 0, and a selected upper 
limit, such as 1). Three commonly used sigmoidal functions 
are 

<l>(z)~l/{1 +exp(-z) }, (3A) 

<l>(zMl+tan h(z)}/2, (3B) 

<l>(z)~{ n+2·tan- 1(z) }/2n, (3C) 

M (4) 

z= 1=C=·Pm· 
m=O 

Other sigmoidal functions can also be used here. In the con
text of design optimization, a trained NN represents a 
response surface, and the NN output is the objective function. 
In multiple objective optimization, different NNs can be used 

35 supplied to the input nodes of the network 21. However, in a 
more general setting with many parameters, this leads to a 
very large number of input nodes and as-yet-undetermined 
connection weights cnm· 

A second approach, referred to as a support vector machine 
40 (SVM), provides a nonlinear transformation from the input 

space variables Pm into a feature space that contains the origi
nal variables Pm and the important nonlinear combinations of 
such terms (e.g., (p 1)

2
, (p 1)(p2 )

3 (pM)2 and exp(p2 )) as coor
dinates. For the example functionh(p 1 ,p2 ) set forth inEq. (5), 

45 the five appropriate feature space coordinates would be p u p2 , 

(p 1)2, p1 ·p2 and (p2 )
2

. Very high dimensional feature spaces 
can be handled efficiently using kernel functions for certain 
choices of feature space coordinates. The total mapping 
between the input space ofindividual variables (first power of 

50 each parameter Pm) and the output space is a hyperplane in 
feature space. For a model that requires only linear terms and 
polynomial terms of total degree 2 (as in Eq. (5)), in the input 
space variables, the model can be constructed efficiently 
using kernel functions that can be used to define inner prod
ucts of vectors in feature space. However, use of an SVM 
requires a priori knowledge of the functional relationships 
between input and output variables. 

55 

60 

The mapping between the input space parameters and the 
output function is defined using a kernel function and certain 
Lagrange multipliers. The Lagrange multipliers are obtained 
by maximizing a function that is quadratic and convex in the 
multipliers, the advantage being that every local minimum is 
also a global minimum. By contrast, a neural net often exhib
its numerous local minima of the training error( s) that may 

65 not be global minima. However, several of these local minima 
may provide acceptable training errors. The resulting multi
plicity of acceptable weight vectors can be used to provide 
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superior network generalization, using a process known as 
network hybridization. A hybrid network can be constructed 
from the individual trained networks, without requiring data 
re-sampling techniques. 

An attractive feature of a neural net, vis-a-vis an SVM, is 
that the coordinates used in a feature space do not have to be 
specified (e.g., via kernel functions). However, use of an 
SVM, in contrast to use of a neural net, allows one to intro
duce features spaces with a large number of dimensions, 
without a corresponding increase in the number of coeffi
cients. 

A primary contribution of the present invention is to pro
vide a mechanism, within the NN component, for determin
ing at least the coordinate (parameter) combinations needed 
to adequately define the feature space for an SVM, without 
requiring detailed knowledge of the relationships between 
input parameters and the output function. 

FIG. 3 is a schematic view of anNN/SVM (neural network/ 
support vector machine) system 31, including an NN compo
nent and an SVM component, according to the invention. The 
system 31 includes input layer nodes 33-i (i=l, 5) andhidden 
layer nodes 35-j G=l, 2, 3). FIG. 3 also indicates some of the 
connection weights associated with connections of the input 
layer terminals and the hidden layer terminals. More than one 
hidden layer can be provided. The hidden layer output signals 
are individually received at an SVM 37 for further processing, 
including computation of a training error. If the computed 
training error is too large, one or more of the connection 
weights is changed, and the (changed) connection weights are 
returned to the NN component input terminals for repetition 
of the procedure. Optionally, the SVM 37 receives one or 
more user-specified augmented inner product or kernel pre
scriptions (discussed in the following), including selected 
combinations of coordinates to be added, from an augmenta
tion source 38. 

FIG. 4 is a flow chart illustrating an overall procedure 
according to the invention. In step 41, the system provides 
(initial) values for connection weights cnm forthe input layer
hidden layer connections. These weights may be randomly 
chosen. The input signals may be a vector of parameter values 
p=(p1, ... , PM) (M=5 in FIG. 3) in parameter space. Instep 42, 
output signals from the hidden layer are computed to define 
the feature space for the SVM. The NN component of the 
system will provide appropriate combinations of the param
eter space coordinates as new coordinates in a feature space 
for the SVM (e.g., u1=p1, u2=p2, u3=p/, u4=p1·P2, Us=p/, 
from Eq. (5)) 

In step 43, feature space inner products that are required for 
the SVM are computed. In step 43A, user-specified feature 
space coordinates and corresponding inner products and ker
nel functions are provided. Note that the feature space is a 
vector space with a corresponding inner product. 

In step 44, a Lagrange functional is defined and minimized, 
subject to constraints, to obtain Lagrange multiplier values 
for the SVM. In step 45, the NN connection weights and the 
Lagrange multiplier coefficients are incorporated and used to 
compute a training error associated with this choice of values 
within the NN/SVM. 

In step 46, the system determines ifthe training error is no 
greater than a specified threshold level. If the answer to the 
query in step 46 is "no", the system changes at least one 
connection weight, in step 47, preferably in a direction that is 
likely to reduce the training error, and repeats steps 42-46. If 
the answer to the query in step 46 is "yes", the system inter
prets the present set of connection weights and Lagrange 
multiplier values as an optimal solution of the problem, in 
step 48. 

6 
Note that steps 42-48 can be embedded in an optimization 

loop, wherein the connection weights are changed according 
to the rules of the particular optimization method used. 

The hybrid NN/SVM system relies on the following 
broadly stated actions: (1) provide initial random (or other
wise specified) connection weights for the NN; (2) use the 
activation function(s) and the connection weights associated 
with each hidden layer unit to construct inner products for the 
SVM; (3) use the inner products to compute the Lagrange 

10 multiplier values; ( 4) compute a training error associated with 
the present values of the connection weights and Lagrange 
multiplier values; ( 5) if the training error is too large, change 
at least one connection weight and repeat steps (2)-(4); (6) if 
the training error is not too large, accept the resulting values 

15 of the connection weights and the Lagrange multiplier values 
as optimal. 

This method has several advantages over a conventional 
SVM approach. First, coordinates that must be specified a 
priori in the feature space for a conventional SVM are deter-

20 mined by the NN component in an NN/SVM system. The 
feature space coordinates are generated by the NN compo
nent to correspond to the data at hand. In other words, the 
feature space provided by the NN component evolves to 
match or correspond to the data. A feature space that evolves 

25 in this manner is referred to as "data-adaptive." The feature 
space coordinates generated by the NN component can be 
easily augmented with additional user-specified feature space 
coordinates (parameter combinations) and kernel functions. 

Second, use of activation functions that are nonlinear func-
30 tions of the connection weights in the NN component rein

troduces the possibility of multiple local minima and pro
vides a possibility of hybridization without requiring data 
resampling. 

The feature spaces generated by the NN hidden layer can 
35 be easily augmented with high-dimensional feature spaces 

without requiring a corresponding increase in the number of 
connection weights. For example, a polynomial kernel con
taining all monomials and binomials (degrees one and two) in 
the parameter space coordinates can be added to an inner 

40 product generated by the SVM component, without requiring 
any additional connection weights or Lagrange multiplier 
coefficients. 

The NN/SVM system employs nonlinear optimization 
methods to obtain acceptable connection weights, but the 

45 weight vectors thus found are not necessarily unique. Many 
different weight vectors may provide acceptably low training 
errors for a given set of training data. This multiplicity of 
acceptable weight vectors can be used to advantage. If vali
dation data are available, one can select the connection weight 

50 vector and resulting NN/SVM system with the smallest vali
dation error. In aerodynamic design, this requires additional 
simulations that can be computationally expensive. 

If validation data are not available, multiple trained NN s or 
NN/SVM systems can be utilized to create a hybrid 

55 NN/SVM. A weighted average of output signals from trained 
multiple NN/SVMs is formed as a new hybrid NN/SVM 
solution. Where the weights are equal, if errors for the N 
individual output solutions are uncorrelated and individually 
have zero mean, the least squares error of this new solution is 

60 a factor ofN less than the average of the least squares errors 
for the N individual solutions. When the errors for the N 
individual output solutions are partly correlated, the hybrid 
solution continues to produce a least squares error that is 
smaller than the average of the least squares errors for the N 

65 individual solutions, but the difference is not as large. The N 
trained NN/SVMs used to form a hybrid system need not have 
the same architecture or be trained using the same training set. 
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FIG. 5 graphically illustrates results of applying an 
NN/SVM analysis according to the invention to a six-param
eter model, namely, an approximation to the fifth degree 
polynomial y=x(l-x2

)( 4-x2
). Data are provided at each of 11 

training locations (indicated by small circles on the curve) in 5 

the domain of the variable x. After a few iterations of an 
NN/SVM analysis, the 11 training values, (xk,y k)=(xk,xk(l
x/)( 4-x/)), provide the solid curve as a generalization, 
using the NN/SVM analysis. The dashed curve (barely visible 
in FIG. 5) is a plot of the original fifth order polynomial. 

FIG. 6 graphically illustrates similar results of an applica
tion of the NN/SVM analysis to a logarithm function, y=ln 
(x+4), using 11 training values. The solid curve is the gener
alization provided by the NN/SVM analysis. 

10 

FIG. 7 graphically illustrates similar results of an applica- 15 

tion of the NN/SVM analysis to an exponential function, 
y=6·exp(-0.5·x2

), using 11 training values. The solid curve is 
the generalization provided by the NN/SVM analysis, using 
the 11 training values. 

The generalization in each of FIGS. 5, 6 and 7 is vastly 20 

superior to corresponding generalizations provided by con
ventional approaches. In obtaining such a generalization, the 
same computer code can be used, with no change of param
eters or other variables required. 

FIGS. SA, SB and SC are a flow chart illustrating the 25 

application of a response surface methodology (RSM) used in 
this invention to obtain an optimal cross-sectional shape of an 
airfoil, as an example, where specified pressure values at 
selected locations on the airfoil perimeter are to be matched as 
closely as possible. In step Sl, a set of parameters, expressed 30 

here as a vector p=(p1 , PM), is provided that adequately 
describes the airfoil cross-sectional shape (referred to as a 
"shape" herein), where M (~ 1) is a selected positive integer. 
For example, the airfoil shape might be described by (1) first 
and second radii that approximate the shape of the airfoil at 35 

the leading edge and at the trailing edge, (2) four coefficients 
that describe a tension spline fit of the upper perimeter of the 
airfoil between the leading and trailing edge shapes, and (3) 
four coefficients that describe a tension spline fit of the lower 
perimeter of the airfoil between the leading and trailing edge 40 

shapes, a total often parameters. In a more general setting, the 
number M of parameters may range from 2 to 20 or more. 

8 
location rk. That is, a total ofK NN/SVM systems are used to 
model the overall pressure dependence on the parameters Pm· 
The calculated pressure distribution P(rk;Pvert) and/or the air
foil can be replaced by any other suitable physical model, in 
aerodynamics or in any other technical field or discipline. 
Used together, the trained NN/SVM systems will provide the 
pressure distribution P(r k;p) for general parameter value vec
tors p. 

In step S6, a first objective function, such as 

K 

OBJ(p; pO; 1) = ~ w,{P(r,; p)-P(r,; opt))2
, 

k=l 

(6A) 

is introduced, where {wk} is a selected set of non-negative 
weight coefficients. 

In step S7, the minimum value of the first objective func
tion OBJ(p;pO; 1) and a corresponding parameter vector p=p 
(min) are determined for parameter vectors p within a 
selected sphere having a selected diameter or dilatation factor 
d, defined by lp-pOI ~d (with d typically in a range 1<d~10), 
using a nonlinear optimization method. Other measures of 
specifying a "trust region" can also be used here. 

In step SS, the system calculates a second objective func
tion, which may be the first objective function or (preferably) 
may be defined as 

K 

OBJ(p; pO; 2) = ~ w,{P(r,; p; CFD)-P(r,; opt))2
, 

k=l 

(6B) 

where P(rk;p;CFD) is a pressure value computed using a CFD 
simulation, for p=p(min) and p=pO. The system then deter
mines ifOBJ(p(min);p0;2)<0BJ(pO;p0;2) for the intermedi
ate minimum value parameter vector, p=p(min). One can use 
the first objective function OBJ(p;pO;l), defined in Eq. (6A), 
rather than the objective function 0 BJ (p ;p0;2) defined in Eq. 
(6B), for this comparison, but the resulting inaccuracies may 
be large. 

If the answer to the query in step SS is "no" for the choice 

In step S2, initial values of the parameters, p=pO, are pro
vided from an initial approximation to the desired airfoil 
shape. 

In step S3, optimal data values P(rk;opt) (e.g., airfoil pres
sure values or airfoil heat transfer values) are provided at 
selected locations rk=(xk,yk,zk)(k=l, ... , K) on the airfoil 
perimeter. 

In step S4, an equilateral M-simplex, denoted MS(pO), is 
constructed, with a centroid or other selected central location 
at p=pO, in M-dimensional parameter space, with vertices 
lying on a unit radius sphere. Each of the M + 1 vertices of the 
M-simplex MS(pO) is connected to the centroid, p=pO, by a 
vector llp(m) (m=l, ... , M+l) in parameter space. More than 
the M+l vertices can be selected and used within the M-sim
plex. For example, midpoints of each of the M(M+l)/2 sim
plex edges can be added to the M + 1 vertices. These additional 
locations will provide a more accurate NN/SVM model. 

45 of dilatation factor d, the dilatation factor d is reduced to a 
smaller value d'(l <d'<d), in step S9, and steps SS and S9 are 
repeated until the approximation pressure values {P(rk,p) h 
for the extrapolated parameter value set provide an improved 
approximation for the optimal values for the same airfoil 

50 perimeter locations, r=rk. 

In step S5, a computational fluid dynamics (CFD) or other 
calculation is performed for an extended parameter value set, 
consisting of the parameter value vectors p=pO and each of 
the M+l M-simplex vertices, p=pvert=pO+llp(m), to obtain a 
calculated pressure distribution P(rk;Pvert) at each of the 
selected perimeter locations, r=rk for each of these parameter 65 

value sets. One hybrid NN/SVM is assigned to perform the 
analysis for all vertices in the M-simplex MS(pO) at each 

If the answer to the query in step SS is "yes", the system 
moves to step 90, uses the (modified) objective function and 
uses the intermediate minimum-cost parameter value set, p=p 
(min), which may lie inside or outside the M-simplex MS(pO) 

55 in parameter space. Minimization of the objective function 
OBJ(p;pO) may include one or more constraints, which may 
be enforced using the well known method of penalty func
tions. The (modified) objective function definition in Eq. (6A) 
(or in Eq. (6B)) can be replaced by any other positive definite 

60 definition of an objective function, for example, by 

K 

OBJ(p; pO) = ~ w, IP(r,; p) - P(r,; opt)lq, 
k=l 

(6C) 
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where the exponent q is a selected positive number. 
The constraints imposed are also modeled using an 

NN/SVM system with an appropriate objective function 
incorporating these constraints, for example, as part of a 
simplex method as described in W.H. Press et al, Numerical 
Recipes in C, Second Edition, 1992, Cambridge University 
Press, pp. 430-438. 

If the original parameter value set p has an insufficient 
number of parameters, this will become evident in the pre
ceding calculations, and the (modified) objective function 10 

OBJ(p(min);pO) or OBJ(p(min);pO)* will not tend toward 
acceptably small numbers. In this situation, at least one addi
tional parameter would be added to the parameter value set p 
and the procedure would be repeated. In effect, an NN/SVM 
procedure used in an RSM analysis will require addition of 15 

(one or more) parameters until the convergence toward a 
minimum value that is acceptable for an optimized design. 

In step 91, the system determines ifthe (modified) objec
tive function OBJ(p(min);pO)* is no greater than a selected 
threshold number (e.g., 1or10-4

, in appropriate units). If the 20 

answer to the query in step 91 is "no", a new M-simplex 
MS(p'O) is formulated, in step 92, with p'O=p(min) as the new 
center, and steps 85-90 are repeated at least once. Each time, 
a new parameter value set, p=p(min), is determined that 
approximately minimizes the objective function OBJ(p;p'O). 25 

If the answer to the query in step 91 is "yes", the system 
interprets the resulting parameter set, p=p(min), and the 
design described by this parameter set as optimal, in step 93. 
The method set forth in steps 81-93 is referred to herein as a 
response surface method. 30 

FIG. 9 graphically illustrates an initial turbine airfoil shape 
(dotted curve) and a corresponding optimized turbine airfoil 
(solid curve) that is produced according to the invention, 
where both airfoils have the same scale and are superimposed 
for ease of comparison. The optimized airfoil shape was 35 

determined, beginning with the initial airfoil shape and 
imposing the following constraints: (1) mass flow rate 
through a vane row is preserved; (2) flow exit angle from a 
vane row is preserved; (3) axial chord of a vane remains the 
same; (4) throat area remains the same; (5) no adverse effects 40 

on downstream rotor row; ( 6) no changes in airfoil manufac
turing and assembly procedures; (7) vortex shedding from the 
airfoil trailing end (T-END) is reduced relative to the much 
larger vortex shedding associated with the initial airfoil 
shape; and maximization of trailing end angle <I>(TE) so that 45 

the optimized airfoil is thicker than the initial airfoil. 
The constraint(s) imposed can include the preceding con

straints and can include one or more of the following: vortex 
shedding from a trailing edge of the airfoil is no greater than 
a selected threshold value; a difference between any resonant 50 

frequency of the airfoil and vortex shedding frequency is at 
least equal to a threshold frequency difference; mass of the 
airfoil is no larger than a threshold mass value; pressure value 
at each of a sequence of selected locations along a perimeter 
of the airfoil differs from a corresponding reference pressure 55 

value by no more than a threshold pressure difference value; 
mass flow rate through each blade or vane is unchanged (from 
the value used for the initial airfoil shape). The optimal shape 
should be substantially invariant under scale change by a 
factor ofljJ (1.jJ>O) and/or under rotation by a selected angle in 60 

a plane containing the drawing(s) in FIG. 9. 
FIG. 10 graphically compares the trailing edge of the initial 

airfoil shape and of the optimized airfoil shape in greater 
detail. Indicating the increased thickness of the optimized 
airfoil shape at T-END. This increased thickness, adjacent to 65 

the trailing end and elsewhere, of the optimized airfoil shape 
increases the airfoil resonant frequency. The axial chord 

10 
lengths for the initial airfoil shape and the optimized airfoil 
shape are approximately 0.4 inches. Note that the trailing 
edge of the optimal blade shape has a radius of curvature that 
is larger than the radius of curvature of the initial blade shape, 
for this example. 

FIGS. llA and llB graphically illustrate surface pressure 
distribution for the initial and optimized airfoil shapes, 
respectively, shown in FIG. 9. The difference between the 
upper and lower pressure curves at any given location x on the 
airfoil perimeter represents the local airfoil loading. For the 
initial airfoil shape, this load increases from nearly zero at the 
leading edge (x=O.O) to a maximum at about x=0.75 and 
decreases to small values near the trailing edge. Notice that 
the loading is inappropriate, because the load is smallest 
where the airfoil is thick (near the leading edge) and is largest 
where the airfoil is thin. The load for the optimal airfoil shape 
is much improved: the larger loads occur where the airfoil is 
thick, and thus stronger. The improved loading for the optimal 
airfoil shape also reduces vortex shedding amplitudes. 

FIG. 12 graphically illustrates computed pressure ampli
tude value PA (maximum pressure minus corresponding 
minimum pressure as the pressures fluctuate in time) for the 
initial and optimized airfoil shapes. At the trailing end T-END 
of the blade, the optimal airfoil shape PA value is about 25 
percent of the (much higher) PA value for the initial airfoil 
shape. Along the entire airfoil perimeter, the optimized airfoil 
shape provides a computed PA value that is, with a few 
exceptions, about 20-50 percent of the PA value for the initial 
airfoil shape. 

In manufacturing a blade according to the optimized airfoil 
shape, some perturbations in dimensions, relative to the ideal 
optimized dimensions, are inevitable. These perturbations 
and their effects have been modeled by (1) assigning a local 
thickness (at selected locations on the airfoil perimeter) in 
which the airfoil thickness, in a direction perpendicular to the 
local slope of the airfoil, varies by an amount f(r)hO, where 
h0=0.006 inch and f is a random variable uniformly distrib
uted over a range -1.0~f~l.O (varying from one perimeter 
location r to another); (2) computing the perturbations to the 
airfoil shape at locations intermediate between the selected 
locations, using a spline; and (3) recomputing the pressure 
loading value for the resulting changed airfoil shape. This 
modeling was performed for ten sets of independently chosen 
sets of random variables { f(r)}" and the resulting ten per
turbed pressure amplitude distributions for the optimized air
foil shape are graphically illustrated in FIG.13 (perturbations 
1-5) and FIG. 14 (perturbations 6-10). For comparison pur
poses, the pressure amplitude values PA for the initial airfoil 
shape are included in each of FIGS. 13and14. FIGS.13 and 
14 demonstrate the robustness of the optimized airfoil shape 
to modest perturbations in airfoil thickness at each of a 
sequence of airfoil perimeter locations: the PA values for the 
perturbed optimized airfoil shapes for these ten perturbations 
are nearly the same and are again about 20-50 percent of the 
corresponding PA values for the initial airfoil shape. 

FIGS. 15 and 16 graphically illustrate the perturbed opti
mized airfoil shape in a neighborhood of the trailing end 
T-END for perturbations 1-5 and 6-10, respectively. The air
foil thickness appears to change by 10-30 percent near 
T-END for each of these ten perturbations. 

For a particular design determined using the constraints set 
forth in the preceding, the following improvements have been 
confirmed by numerical computation and modeling of the 
resulting airfoil shape: (1) the optimized airfoil shape is 
thicker and stronger (mean operating stresses reduced by an 
estimated 37 percent); (2) vortex shedding amplitude is 
reduced substantially; (3) vortex shedding frequency is 

mahluwal
Highlight



US 7,454,321 Bl 
11 

reduced, lowest airfoil resonant frequency is increased, and 
the frequency difference is increased to at least 27 percent of 
the vortex shedding frequency; (4) shedding characteristics 
are robust and change relatively little in response to random 
changes in airfoil dimensions that might be introduced by 
manufacturing processes; (5) unsteady pressure loading on 
the optimized shape airfoil is reduced by 50-80 percent, rela
tive to the initial airfoil shape; (6) airfoil surface cracking is 
(predicted to be) eliminated with the optimized airfoil shape; 

12 
response of the object is to be optimized. The object may be 
a aircraft wing or turbine blade for which an ideal pressure 
distribution at specified locations on the object is to be 
achieved as closely as possible. The object may be a chemi
cally reacting system with desired percentages of final com
pounds, for which total thermal energy output is minimized. 
The object may be represented at spaced apart locations or at 
spaced apart times by a group of independent coordinates, 
and an objective or cost function is presented, representing 

10 the response to be optimized. One or more constraints, either 
physical or numerical, are also set down, if desired. 

(7) the optimized airfoil trailing edge shape has a larger 
minimum radius and is easier to manufacture; (8) blade fab
rication time can be reduced by eliminating certain welding 
activities; (9) all constraints are satisfied; (10) no substantial 
change(s) in turbine performance; (11) airfoil mean life to 
failure is predicted to be increased by an unlimited amount, 15 

based on a standard assumption of 10 percent alternating 
stresses; and (12) shedding resonance response is eliminated. 
The present design is intended for low speed, incompressible 
flow, although several of the preceding features appear to 
extend to high speed flow as well. 20 

Table I sets forth airfoil perimeter coordinates, in an xy
plane, for the optimized airfoil shape at a sequence of 301 
locations, where the x-axis and y-axis are positioned as indi
cated in FIG. 9. Substantially the same optimal shape would 
result if fewer than all the 301 locations in Table I are specified 25 

(e.g., 1/m of the 301 points, where m=2, 3, 4, ... ). 

In an NN analysis, one relevant problem is minimizing 
empirical risk over a sum oflinear indicator or characteristic 
functions 

(A-1) 

where 8 is an indicator or characteristic function, x is a coor
dinate vector and w is a vector of selected weight coefficients. 
Consider a training set of (N+l)-tuples (x1 ,y 1), (x2 ,y2), ... , 

(xK,y K), where each x1=(x/, ... , x1N) is an N-tuple represent
ing a vector and y1 is a scalar having only the values -1 or+ 1. 

The indicator function 8(z) has only two values, 0 and 1, 
and is not generally differentiable with respect to a variable in 
its argument. The indicator function 8(z) in Eq. (A-1) is often 

30 replaced by a general sigmoid function S(z) that is differen
tiable with respect to z everywhere on the finite real line, is 
monotonically increasing with z, and satisfies 

The perturbation procedure used to generate the perturbed 
shapes shown in FIGS. 9-16 may be applied more generally to 
generate a perturbed shape airfoil, as illustrated in FIG. 17.A 
sequence {xn}n ofN spaced apart locations on the perimeter 
ofan airfoil is chosen, where N=l 0 in FIG. 17 for illustration, 
and a line segment L(xn), of a selected unit length is extended 
perpendicular to the airfoil at the location xn. The unit length 
carries its own sign (±) and is preferably a selected small 
positive or negative number equal to fn·L, where fn is a 35 

selected fraction, for example, -0.1 O~fn <0.10, or more pref
erably -0.05~fn<0.05, and Lis a chord length (or diameter) 
of the airfoil. The shape of the airfoil at the location xn is 
perturbed (extended or contracted) by the signed length fn·L 
(xn), and the perturbed shape between perimeter locations 40 

xn-l' xn and xn+l (n=l, ... 'N-1) (with Xo=xN) is determined 

(A-2a) 

(A-2b) 

Examples of suitable sigmoid functions include the following 

S(z)~l/ {1 +exp(-az) }, 

S(z )~{1 +tan h(lh+)() ]/2 

by a cubic spline or other appropriate numerical procedure, to 
provide a perturbed shape S(perturb) based on the initial 
airfoil shape S(initial). The perturbed airfoil shape may be 
denoted 45 where a, ~ and ll are selected positive values. The indicator 

sum f(x,w) in Eq. (A-1) is replaced by a modified sigmoid 
S(perturb )~<I>{ S(initial); {xnfn-L }wN}, (7) sum 

where <I> is a functional that performs the procedure indicated 

G(x, w) = s{f w; ·x;}· 
1=1 

(A-3) 
in this paragraph, { xn,fn ·L} n; is the sequence of selected 50 
locations xn and corresponding signed line segment lengths 
fn·L, and N is the number of perimeter locations used 
(2~N~ 100). One may, for example, begin with the optimal 
shape indicated in FIG. 9 and apply this perturbation proce
dure to produce a modified optimal shape; or one may apply 
this perturbation procedure as part of the NN/SVM process
ing. One may also rotate the optimal shape in the xy-plane 
and/or apply a scale factorofljJ (1.jJ>O) to the optimal shape, as 
discussed in connection with FIG. 9. 

55 where S is a selected linear or nonlinear function. 

APPENDIX 

Examples of an NN analysis and of an SVM analysis are 
presented here. The invention is not limited to a particular NN 

60 

analysis or to a particular SVM analysis. 65 

Consider an object, represented by a group of coordinates 
x=(x1

, x2
, ... , xN), for which some physical feature or 

In order to minimize the empirical risk, one must determine 
the parameter values w, that minimize an empirical risk func
tional 

K 

R,mp(w) = ~ (YJ - F(xj, w))2 /K, 
j=l 

(A-4) 

which is differentiable in the vector components w. One may, 
for example, use a gradient search approach to minimize 

mahluwal
Highlight
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Remp(w). The search may converge to a local minimum, 
which may or may not be a global minimum for the empirical 
risk. 

Assume, first, that the training data { ( x1,y)} can be sepa
rated by an optimal separating hyperplane, defined by 

(A-5) 

where g partly defines the hyperplane. A separating hyper
plane satisfies 

(w·x)-g"':l(y)":l), (A-6a) 

(A-6b) 

14 

K K 

L(a:) = 1= a:i - (1/2)1= a:; ·0:1 · y; · YJ · (x; ·xj). 
(A-16) 

j=l i,j=l 

This functional is to be maximized, subject to the constraints 
expressed inEqs. (A-13) and (A-14). Substituting the expres-

10 sion for optimal parameter vector w into Eq. (A-14), one 
obtains 

(A-17) 

An optimal separating hyperplane maximizes the functional 15 
The preceding development assumes that the training set 

data { (x1,y)} are separable by a hyperplane. If these data are 
not separable by a hyperplane, one introduces non-negative 
slack variables x/i=l, ... , K) and a modified functional 

<l>(wMww)/2, (A-7) 

with respect to the vector values wand the value g, subject to 
the constraints in Eqs. (A-6a)-(A-6b ). Unless indicated oth
erwise, all sums in the following are understood to be over the 20 

indexj (=1, ... , K). 

<l>(wMw·w)+C-JV, 

subject to the constraints 

(A-18) 

A solution to this optimization problem is given by a saddle 
point of a Lagrange functional 

K 

L(w, g, a:)= (w·w)/2-1= a:1{((x1 ·w)-g)-(y1 -1)). 
j=l 

(A-8) 

At a saddle point, the solutions (w,g,a) satisfy the relations 

(A-9) 

Y/((w·x)-g)"':l-JV (A-19) 

25 where the (positive) coefficient C corresponds to an inter
penetration of two or more groups of training set (N + 1 )-tuples 
into each other (thus, precluding separation by a hyperplane). 
Repeating the preceding analysis, where the functional <I>(w) 
replaces the term(w·w), an optimal solution (w,g,a) is found 

30 as before by maximizing a quadratic form, subject to the 
modified constraints 

(A-20a) 

aL/aw=O, (A-10) 
35 

(A-20b) 

with the associated constraint 

a)~O, 

Equation (A-9) yields the constraint 

K 

1=a:1·Y1=0. 
j=l 

(A-11) 

(A-12) 

Equation (A-10) provides an expression for the parameter 
vector w of an optimal hyperplane as a linear combination of 
vectors in the training set 

(A-13) 

An optimal solution (w,g,a) must satisfy a Kuhn-Tucker con
dition 

Use of (only) hyperplanes in an input space is insufficient for 
certain classes of data. See the examples in FIGS. llA and 
llB. 

40 
In a support vector machine, input vectors are mapped into 

a high dimension feature space Z through a selected nonlinear 
mapping. In the space Z, an optimal separating hyperplane is 
constructed that maximizes a certain li.-margin associated 
with hyperplane separation. 

45 First, consider a mapping that allows one to construct deci-

50 

sion polynomials of degree 2 in the input space. One creates 
a (quadratic) feature space Z having dimension M = N (N + 3 )/2, 
with coordinates 

u1~:>i(j~l, ... , N: N coordinates) (A-21a) 

ll;+.i\FX/U=l, ... , N; N coordinates) (A-21b) 

(A-21c) 

(A-l 4) 55 A separating hyperplane constructed in the space Z is 

Only some of the training vectors, referred to herein as "sup
port vectors," have non-zero coefficients in the expansion of 
the optimal solution vector w. More precisely, the expansion 
in Eq. (A-13) can be rewritten as 

(A-15) 

support vectors 

assumed to be a second degree polynomial in the input space 
coordinates x1G=l, ... , N). 

By analogy, in order to construct a polynomial of degree k 

60 
in the input coordinates, one must construct a space Z having 
of the order ofNk coordinates, where one constructs an opti
mal separating hyperplane. For example, for k=4, the maxi
mum number of coordinates needed in the space Z is 

max(k~4MN+k)!l{N!k!h-4 (A-22) 

Substituting the optimal vector w back into Eq. (A-8) and 65 

taking into account the Kuhn-Tucker condition, the Lagrange 
functional to be minimized is re-expressed as 

which is about 108 coordinates for a modest size input space 
ofN=lOO independent coordinates. 
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For a quadratic feature space Z, one first determines a 
kernel function K of inner-products according to 

(uLl ·uL2)~K(x11,x12)~K(x12,x11 )(Ll, L2~1 ... , N(N+l)I 
2). (A-23) 

One constructs nonlinear decision functions 

I(x)~sgn{La1K(x,x)+b0} (A-24) 

support vectors 

that are equivalent to the decision function <I>(x) in Eq. 
(A-18). By analogy with the preceding, the coefficients a1 are 
estimated by solving the equation 

W(a)~Lar('12)Laiarix1 K(x;,x), (A-25) 

with the following constraint (or sequence of constraints) 
imposed: 

La/y;=O, (A-26a) 

a)~O. (A-26b) 

Mercer (1909) has proved that a one-to-one correspon-
dence exists between the set of symmetric, positive definite 
functions K(x,y) defined on the real line that satisfy 

ff K(x,y)j(x)fly)dxdy~O (A-27) 

for any L2-integrable function f(x) satisfying 

ff(x)2dx<OO (A-28) 

and the set of inner products defined on that function space 
{ f}. Thus, any kernel function K(x1ux12) satisfying conditions 
of the Mercer theorem can be used to construct an inner 
product of the type set forth in Eq. (A-23). Using different 
expressions for the kernel K(x11 ,x12), one can construct dif-
ferent learning machines with corresponding nonlinear deci-
sion functions. 

For example, the kernel function 

K(x',x'~~{(xx'~+l }", (A-29) 

can be used to specify polynomials of degree up to q (prefer-
ably an integer). 

Much of the preceding development is taken from V.N. 
Vapnik, "An Overview of Statistical Learning Theory", IEEE 
Trans. Neural Networks, vol. 10 (1999), pp. 988-999. The 
present invention provides a hybrid approach in which the 
input layer and hidden layer(s) of an NN component are used 
to create a data-adaptive feature space for an SVM compo-
nent. As indicated in the preceding, the combined NN/SVM 
analysis of the invention is not limited to the particular NN 
analysis or to the particular SVM analysis set forth in this 
Appendix. 

TABLE 1 

AIRFOIL SHAPE DATA (301 PERIMETER POINTS) 

Pt.No. x-value y-value 

1) 0.00000 0.00000 
2) 0.00028 0.00479 
3) 0.00119 0.00986 
4) 0.00283 0.01514 
5) 0.00532 0.02056 
6) 0.00872 0.02601 
7) 0.01310 0.03138 
8) 0.01848 0.03650 
9) 0.02481 0.04124 

10) 0.03203 0.04545 
11) 0.04001 0.04900 

16 

TABLE I-continued 

AIRFOIL SHAPE DATA (301 PERIMETER POINTS) 

Pt.No. x-value y-value 

12) 0.04861 0.05178 
13) 0.05764 0.05373 
14) 0.06694 0.05479 
15) 0.07628 0.05505 

10 16) 0.08540 0.05462 
17) 0.09428 0.05355 
18) 0.10295 0.05187 
19) 0.11140 0.04964 
20) 0.11964 0.04690 
21) 0.12767 0.04368 

15 22) 0.13551 0.04002 
23) 0.14315 0.03595 
24) 0.15061 0.03150 
25) 0.15788 0.02671 
26) 0.16497 0.02160 
27) 0.17188 0.01621 

20 
28) 0.17862 0.01055 
29) 0.18520 0.00465 
30) 0.19161 -0.00146 
31) 0.19786 -0.00777 
32) 0.20396 -0.01425 
33) 0.20991 -0.02088 
34) 0.21571 -0.02763 

25 35) 0.22136 -0.03449 
36) 0.22688 -0.04144 
37) 0.23226 -0.04845 
38) 0.23751 -0.05551 
39) 0.24262 -0.06261 
40) 0.24761 -0.06973 

30 41) 0.25248 -0.07685 
42) 0.25722 -0.08397 
43) 0.26185 -0.09108 
44) 0.26636 -0.09816 
45) 0.27076 -0.10520 
46) 0.27506 -0.11221 

35 47) 0.27924 -0.11916 
48) 0.28332 -0.12606 
49) 0.28730 -0.13290 
50) 0.29119 -0.13968 
51) 0.29497 -0.14638 
52) 0.29866 -0.15301 

40 
53) 0.30226 -0.15955 
54) 0.30578 -0.16602 
55) 0.30920 -0.17240 
56) 0.31254 -0.17869 
57) 0.31580 -0.18490 
58) 0.31897 -0.19101 
59) 0.32207 -0.19703 

45 60) 0.32509 -0.20296 
61) 0.32804 -0.20881 
62) 0.33091 -0.21459 
63) 0.33371 -0.22030 
64) 0.33644 -0.22594 
65) 0.33911 -0.23152 

50 66) 0.34171 -0.23704 
67) 0.34424 -0.24251 
68) 0.34671 -0.24792 
69) 0.34912 -0.25329 
70) 0.35147 -0.25860 
71) 0.35377 -0.26386 

55 72) 0.35600 -0.26907 
73) 0.35818 -0.27424 
74) 0.36031 -0.27935 
75) 0.36238 -0.28442 
76) 0.36440 -0.28944 
77) 0.36637 -0.29441 

60 
78) 0.36830 -0.29934 
79) 0.37017 -0.30421 
80) 0.37200 -0.30903 
81) 0.37378 -0.31381 
82) 0.37552 -0.31853 
83) 0.37722 -0.32321 
84) 0.37887 -0.32783 

65 85) 0.38049 -0.33240 
86) 0.38206 -0.33691 
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TABLE I-continued 

AIRFOIL SHAPE DATA (301 PERIMETER POINTS) 

Pt.No. 

87) 
88) 
89) 
90) 
91) 
92) 
93) 
94) 
95) 
96) 
97) 
98) 
99) 

100) 
101) 
102) 
103) 
104) 
105) 
106) 
107) 
108) 
109) 
110) 
111) 
112) 
113) 
114) 
115) 
116) 
117) 
118) 
119) 
120) 
121) 
122) 
123) 
124) 
125) 
126) 
127) 
128) 
129) 
130) 
131) 
132) 
133) 
134) 
135) 
136) 
137) 
138) 
139) 
140) 
141) 
142) 
143) 
144) 
145) 
146) 
147) 
148) 
149) 
150) 
151) 
152) 
153) 
154) 
155) 
156) 
157) 
158) 
159) 
160) 
161) 

x-value 

0.38359 
0.38509 
0.38655 
0.38797 
0.38936 
0.39075 
0.39212 
0.39346 
0.39479 
0.39610 
0.39738 
0.39865 
0.39990 
0.40113 
0.40234 
0.40354 
0.40472 
0.40588 
0.40702 
0.40814 
0.40925 
0.41034 
0.41142 
0.41248 
0.41352 
0.41455 
0.41556 
0.41656 
0.41754 
0.41851 
0.41947 
0.42041 
0.42133 
0.42224 
0.42314 
0.42403 
0.42490 
0.42576 
0.42660 
0.42744 
0.42826 
0.42907 
0.42986 
0.43065 
0.43142 
0.43218 
0.43294 
0.43367 
0.43440 
0.43512 
0.43583 
0.43652 
0.43721 
0.43789 
0.43855 
0.43921 
0.43985 
0.44049 
0.44112 
0.44173 
0.44234 
0.44294 
0.44353 
0.44411 
0.44469 
0.44525 
0.44581 
0.44636 
0.44690 
0.44743 
0.44795 
0.44847 
0.44898 
0.44948 
0.44997 

y-value 

-0.34137 
-0.34578 
-0.35014 
-0.35444 
-0.35868 
-0.36298 
-0.36726 
-0.37153 
-0.37579 
-0.38003 
-0.38426 
-0.38847 
-0.39267 
-0.39685 
-0.40100 
-0.40514 
-0.40926 
-0.41335 
-0.41742 
-0.42146 
-0.42547 
-0.42946 
-0.43341 
-0.43733 
-0.44121 
-0.44507 
-0.44888 
-0.45267 
-0.45641 
-0.46013 
-0.46380 
-0.46744 
-0.47104 
-0.47460 
-0.47812 
-0.48161 
-0.48505 
-0.48846 
-0.49182 
-0.49515 
-0.49844 
-0.50169 
-0.50490 
-0.50808 
-0.51121 
-0.51430 
-0.51736 
-0.52037 
-0.52335 
-0.52629 
-0.52919 
-0.53205 
-0.53488 
-0.53767 
-0.54042 
-0.54313 
-0.54581 
-0.54845 
-0.55105 
-0.55362 
-0.55616 
-0.55865 
-0.56112 
-0.56355 
-0.56594 
-0.56830 
-0.57063 
-0.57293 
-0.57519 
-0.57742 
-0.57962 
-0.58178 
-0.58392 
-0.58602 
-0.58810 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 
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TABLE I-continued 

AIRFOIL SHAPE DATA (301 PERIMETER POINTS) 

Pt.No. 

162) 
163) 
164) 
165) 
166) 
167) 
168) 
169) 
170) 
171) 
172) 
173) 
174) 
175) 
176) 
177) 
178) 
179) 
180) 
181) 
182) 
183) 
184) 
185) 
186) 
187) 
188) 
189) 
190) 
191) 
192) 
193) 
194) 
195) 
196) 
197) 
198) 
199) 
200) 
201) 
202) 
203) 
204) 
205) 
206) 
207) 
208) 
209) 
210) 
211) 
212) 
213) 
214) 
215) 
216) 
217) 
218) 
219) 
220) 
221) 
222) 
223) 
224) 
225) 
226) 
227) 
228) 
229) 
230) 
231) 
232) 
233) 
234) 
235) 
236) 

x-value 

0.45045 
0.45093 
0.45141 
0.45187 
0.45233 
0.45278 
0.45320 
0.45358 
0.45391 
0.45419 
0.45440 
0.45453 
0.45456 
0.45449 
0.45429 
0.45392 
0.45334 
0.45252 
0.45143 
0.45001 
0.44836 
0.44656 
0.44471 
0.44279 
0.44084 
0.43895 
0.43717 
0.43552 
0.43400 
0.43259 
0.43129 
0.43007 
0.42892 
0.42785 
0.42684 
0.42587 
0.42496 
0.42408 
0.42325 
0.42245 
0.42168 
0.42094 
0.42021 
0.41944 
0.41861 
0.41773 
0.41678 
0.41578 
0.41471 
0.41356 
0.41234 
0.41103 
0.40964 
0.40815 
0.40656 
0.40486 
0.40305 
0.40112 
0.39905 
0.39685 
0.39450 
0.39199 
0.38931 
0.38645 
0.38339 
0.38013 
0.37665 
0.37293 
0.36897 
0.36473 
0.36021 
0.35538 
0.35023 
0.34473 
0.33886 

y-value 

-0.59014 
-0.59216 
-0.59414 
-0.59610 
-0.59802 
-0.59992 
-0.60183 
-0.60374 
-0.60566 
-0.60760 
-0.60954 
-0.61148 
-0.61343 
-0.61538 
-0.61733 
-0.61924 
-0.62110 
-0.62287 
-0.62448 
-0.62582 
-0.62685 
-0.62760 
-0.62819 
-0.62852 
-0.62849 
-0.62800 
-0.62722 
-0.62618 
-0.62497 
-0.62361 
-0.62216 
-0.62064 
-0.61906 
-0.61743 
-0.61576 
-0.61406 
-0.61234 
-0.61060 
-0.60883 
-0.60705 
-0.60526 
-0.60345 
-0.60164 
-0.59972 
-0.59767 
-0.59550 
-0.59318 
-0.59073 
-0.58812 
-0.58534 
-0.58240 
-0.57928 
-0.57596 
-0.57244 
-0.56872 
-0.56477 
-0.56058 
-0.55615 
-0.55146 
-0.54650 
-0.54125 
-0.53571 
-0.52985 
-0.52367 
-0.51714 
-0.51026 
-0.50299 
-0.49534 
-0.48727 
-0.47877 
-0.46982 
-0.46038 
-0.45044 
-0.43996 
-0.42893 
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TABLE I-continued 

AIRFOIL SHAPE DATA (301 PERIMETER POINTS) 

Pt.No. x-value y-value 

237) 0.33259 -0.41731 
238) 0.32590 -0.40510 
239) 0.31875 -0.39229 
240) 0.31113 -0.37885 
241) 0.30299 -0.36478 
242) 0.29430 -0.35006 
243) 0.28502 -0.33470 
244) 0.27511 -0.31870 
245) 0.26454 -0.30206 
246) 0.25397 -0.28587 
247) 0.24375 -0.27064 
248) 0.23387 -0.25630 
249) 0.22432 -0.24281 
250) 0.21509 -0.23010 
251) 0.20617 -0.21811 
252) 0.19755 -0.20681 
253) 0.18921 -0.19615 
254) 0.18116 -0.18609 
255) 0.17337 -0.17659 
256) 0.16584 -0.16761 
257) 0.15856 -0.15913 
258) 0.15153 -0.15112 
259) 0.14473 -0.14355 
260) 0.13816 -0.13638 
261) 0.13181 -0.12961 
262) 0.12567 -0.12319 
263) 0.11974 -0.11712 
264) 0.11400 -0.11137 
265) 0.10846 -0.10593 
266) 0.10310 -0.10077 
267) 0.09792 -0.09588 
268) 0.09292 -0.09124 
269) 0.08808 -0.08684 
270) 0.08340 -0.08267 
271) 0.07888 -0.07871 
272) 0.07451 -0.07495 
273) 0.07028 -0.07138 
274) 0.06620 -0.06799 
275) 0.06225 -0.06477 
276) 0.05844 -0.06171 
277) 0.05475 -0.05879 
278) 0.05119 -0.05602 
279) 0.04774 -0.05339 
280) 0.04441 -0.05088 
281) 0.04119 -0.04849 
282) 0.03808 -0.04622 
283) 0.03507 -0.04405 
284) 0.03217 -0.04199 
285) 0.02936 -0.04002 
286) 0.02664 -0.03814 
287) 0.02402 -0.03635 
288) 0.02148 -0.03465 
289) 0.01898 -0.03289 
290) 0.01661 -0.03106 
291) 0.01437 -0.02913 
292) 0.01225 -0.02711 
293) 0.01024 -0.02498 
294) 0.00835 -0.02271 
295) 0.00657 -0.02027 
296) 0.00492 -0.01764 
297) 0.00341 -0.01477 
298) 0.00209 -0.01161 
299) 0.00102 -0.00813 
300) 0.00028 -0.00427 
301) 0.00000 0.00000 

What is claimed is: 
1. A method for design of a rotating machinery airfoil, the 

method comprising: 

10 

15 

20 
providing a statement of at least one constraint that the final 

airfoil shape must satisfy; 
using computational fluid dynamics ("CFD") to estimate a 

pressure value at each of at least two selected perimeter 
locations for the initial airfoil shape; 

using a neural network/support vector machine ("NN/ 
SVM") and CFD to determine a modified airfoil shape 
and a corresponding pressure value change, from a pres
sure value determined for the initial airfoil shape, at the 
two or more airfoil perimeter locations, in response to 
change of a portion of the airfoil shape in a neighbor-
hood of the corresponding perimeter location; and 

providing at least one of an alphanumeric description and a 
graphical description ofat least one version of the modi
fied airfoil shape as the final airfoil shape. 

2. The method of claim 1, further comprising choosing said 
at least one objective from a group of objectives comprising: 
maximizing thickness of said airfoil by maximizing a trailing 
edge wedge angle for said airfoil; minimizing a peak of pres-

20 sure loss associated with said airfoil; minimizing a magnitude 
of pressure undulations on a surface of said airfoil; and mini
mizing an amplitude of vortex shedding from said airfoil. 

3. The method of claim 1, further comprising choosing said 
at least one constraint from a group of constraints comprising: 

25 vortex shedding from a trailing edge of said airfoil is no 
greater than a selected threshold value; a difference between 
any resonant frequency of said airfoil and a vortex shedding 
frequency is at least equal to a threshold frequency difference; 
mass of said airfoil is no larger than a threshold mass value; 

30 pressure value at each of a sequence of selected locations 
along a perimeter of said airfoil differs from a corresponding 
reference pressure value by no more than a threshold pressure 
difference value; airfoil chord length lies in a selected range; 
mass flow rate through a row of said airfoils is substantially 

35 unchanged; and gas exit angle from a row of said airfoils is 
substantially unchanged. 

4. The method of claim 1, further comprising using said 
computational fluid dynamics to estimate a pressure value at 

40 
each of at least two selected perimeter locations for said initial 
airfoil shape for air flow in at least one subsonic flow regime. 

5. The method of claim 1, further comprising determining 
said modified airfoil shape by a process further comprising: 

45 

50 

55 

60 

providing a sequence of N selected spaced apart vector 
locations xn on a perimeter of said airfoil and a line 
segment, having a length L·fn and being substantially 
perpendicular to a curve representing the airfoil perim
eter in a neighborhood of each of the locations xn, where 
Lis a chord length of said airfoil and fn is a fraction lying 
in a range that is substantially defined by 
-O.lO~fn~0.10, where line segment number n has a 
first end at the location xn and has a second end located 
at a distance L·fn from the line segment first end 
(n=l, ... , N); and 

defining said modified airfoil shape, in part, by a sequence 
of second ends of the line segments number n= 1, ... , N, 
and defining said modified airfoil shape, in part, by a 
selected continuous curve connecting the line segments 
numbers n'-1, n' and n'+l, for n'=l, ... , N-1. 

6. The method of claim 1, further comprising determining 
said modified airfoil shape by a process further comprising: 

providing a sequence of N selected spaced apart vector 

providing an initial airfoil shape; 65 

locations xn =(xn,Y n) on a perimeter of said airfoil and a 
line segment, extending a segment first end at the vector 
xn to a segment second end at a vector x'n =(x'mY'n), 
where x'n =a·xn.+b, y'n,=c·yn.+d, where a, b, c and dare providing a statement of at least one objective that a final 

airfoil shape must satisfy; selected real numbers, and a and b are positive; and 
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defining said modified airfoil shape, in part, by a sequence 
of the line segment second ends number n= 1, ... , N, and 
defining said modified airfoil shape, in part, by a 
selected continuous curve connecting the line segments 
numbers n'-1, n' and n'+l, for n'=l, ... , N-1. 

7. A system for design of a rotating machinery airfoil, the 
system comprising a computer that is programmed: 

to provide an initial airfoil shape; 
to provide a statement of at least one objective that a final 

airfoil shape must satisfy; 
to provide a statement of at least one constraint that the 

final airfoil shape must satisfy; 
to use computational fluid dynamics ("CFD") to estimate a 

pressure value at each of at least two selected perimeter 
locations for the initial airfoil shape; 

10 

15 

to use a neural network/support vector machine ("NN/ 
SVM") and CFD to determine a modified airfoil shape 
and a corresponding pressure value change, from a pres
sure value determined for the initial airfoil shape, at the 
two or more airfoil perimeter locations, in response to 20 

change of a portion of the airfoil shape in a neighbor
hood of the corresponding perimeter location; and 

to provide at least one of an alphanumeric description and 
a graphical description of at least one version of the 
modified airfoil shape as the final airfoil shape. 25 

8. The system of claim 7, wherein said computer is further 
programmed to provide said at least one objective from a 
group of objectives comprising: maximizing thickness of said 
airfoil by maximizing a trailing edge wedge angle for said 
airfoil; minimizing a peak of pressure loss associated with 30 

said airfoil; minimizing a magnitude of pressure undulations 
on a surface of said airfoil; and minimizing an amplitude of 
vortex shedding from said airfoil. 

9. The system of claim 7, wherein said computer is further 
programmed to choose said at least one constraint from a 

35 

group of constraints comprising: vortex shedding from a trail
ing edge of said airfoil is no greater than a selected threshold 
value; a difference between any resonant frequency of said 
airfoil and a vortex shedding frequency is at least equal to a 
threshold frequency difference; mass of said airfoil is no 

40 

larger than a threshold mass value; pressure value at each of a 
sequence of selected locations along a perimeter of said air
foil differs from a corresponding reference pressure value by 

22 
no more than a threshold pressure difference value; airfoil 
chord length lies in a selected range; mass flow rate through a 
row of said airfoils is unchanged; and gas exit angle from a 
row of said airfoils is unchanged. 

10. The system of claim 7, wherein said computer is further 
programmed to use said computational fluid dynamics to 
estimate a pressure value at each of at least two selected 
perimeter locations for said initial airfoil shape for air flow in 
at least one subsonic flow regime. 

11. The system of claim 7, wherein said computer is further 
programmed: 

to provide a variation in shape of said final airfoil shape 
corresponding to variations that can be introduced in 
manufacture of an airfoil having substantially said final 
airfoil shape; 

to vary said final airfoil shape in a neighborhood of at least 
one of said perimeter locations according to the manu
facturing variations, to provide a perturbed final airfoil 
shape; 

to use computational fluid dynamics ("CFD") to estimate a 
pressure value at each of at least two selected perimeter 
locations for the perturbed final airfoil shape; and 

to provide at least one of an alphanumeric description and 
a graphical description of the perturbed final airfoil 
shape. 

12. The system of claim 7, wherein said computer is further 
programmed: 

to provide a sequence ofN selected spaced apart locations 
xn on a perimeter of said airfoil and a line segment, 
having a length L·fn and being substantially perpendicu
lar to a curve representing the airfoil perimeter in a 
neighborhood of each of the locations x where L is a 
chord length of said airfoil and fn is a fra~~ion lying in a 
range that is substantially defined by -O.lO~fn~0.10, 
where line segment number n has a first end at the 
location xn and has a second end located at a distance 
L·fn from the line segment first end (n=l, ... , N); and 

to define said modified airfoil shape, in part, by a sequence 
of second ends of the line segments number n= 1, ... , N, 
and to define said modified airfoil shape, in part, by a 
selected continuous curve connecting the line segments 
numbers n'-1, n' and n'+l, for n'=l, ... , N-1. 

* * * * * 




